Vitamin K2 - Menaquinone-7

bw body weight

CNS Chinese Nutrition Society

CRN Council for Responsible Nutrition

DRI dietary reference intake

EC SCF European Commission Scientific Committee on Food

EFSA European Food Safety Authority

EVM Expert Group on Vitamins and Minerals

HOI highest observed intake level

ICMR-NIN Indian Council of Medical Research - National Institute of Nutrition

IOM Institute of Medicine
IU international unit

JECFA Joint FAO/WHO Expert Committee on Food Additives

KNS Korean Nutrition Society

LOAEL lowest observed adverse effect level

LOEL lowest observed effect level

NDA EFSA Panel on Nutrition, Novel Foods and Food Allergens

NIH National Institute of Health

NOAEL no observed adverse effect level

NOEL no observed effect level RCT randomized clinical trial

SUL safe upper level UF uncertainty factor

UL tolerable upper intake level

Introduction

Vitamin K is a group of fat-soluble vitamins that are essential for biosynthesis of proteins involved in blood coagulation and metabolic pathways in bone and other tissues. This group includes two natural vitamers: vitamins K_1 (phylloquinone) and K_2 (menaquinone) (IOM 2001; Marles et al. 2017; Drake 2022; Zhang et al. 2024). Menaquinones constitute a group of vitamin K2 compounds characterized by structurally variable isoprenoid side chains, commonly designated as MK-n, where "n" indicates the number of isoprene units, ranging from 4 to 13. The

predominant dietary forms include MK-4, mostly found in animal-derived foods, and MK-7 – MK-10, primarily present in fermented foods or dairy products (Sato et al. 2020; Drake 2022). MK-4 is distinctive in its ability to be synthesized endogenously in animal tissues via a conversion pathway from phylloquinone (vitamin K1), MK-4, MK-7, and MK-9 (Ellis et al. 2022). Conversely, long-chain menaquinones (e.g., MK-7) are predominantly produced by bacterial biosynthesis and are ingested through fermented foods or generated endogenously by gut microbiota, although the efficiency of colonic absorption remains uncertain (Beulens et al. 2013; Marles et al. 2017).

Bioavailability

Intestinal absorption of menaquinones occurs predominantly in the duodenum and jejunum, where they are subsequently incorporated into chylomicrons, which facilitate transport via the lymphatic system into systemic circulation (Marles et al. 2017; Zhang et al. 2024). Menaquinones with longer side chains (e.g., MK-7) exhibit increased plasma half-lives and enhanced distribution to extrahepatic tissues relative to both phylloquinones and shorter-chain menaquinones, such as MK-4 (Sato et al. 2012; Halder et al. 2019). For example, the half-life of MK-7 is estimated to be approximately 72 hours, while that of MK-4 is approximately one hour (Schurgers et al. 2007; Zhang et al. 2024). In addition, the extended isoprenoid side chains in menaquinones augment their lipophilicity, thereby contributing to their prolonged biodistribution within the body (Beulens et al. 2013). As such, MK-7 sustains elevated circulating serum concentrations over extended durations relative to MK-4 (Halder et al. 2019; Zhang et al. 2014).

MK-7 has been shown to have higher efficacy at lower doses in clinical trials because of such differences in bioavailability (Sato et al. 2020). Human clinical trials identified in the literature search were conducted with doses ranging from 58-999 μg MK-7 per day, as discussed below. For comparison, available clinical studies conducted with MK-4 have employed doses ranging from 1,500 μg per day to 135 mg per day (45 mg or 45,000 ug, three times daily) (Asakura et al. 2001; Ushiroyama et al. 2002; Nakamura et al. 2014; Koitaya et al. 2014).

Differences in bioavailability between MK-4 and MK-7, as well as variations dosage and study design, may influence the relevance of safety conclusions drawn for MK-7. Therefore, the present

chapter is focused on the available clinical outcomes related to safety of MK-7 and the development of a supplemental UL or HOI¹ level for MK-7 in adults.²

Safety Considerations

Vitamin K acts as a coenzyme for the vitamin K-dependent carboxylase enzyme, which is essential for the activation of proteins that play key roles in blood clotting, bone metabolism, and other physiological processes (NIH 2021; Drake 2022). Prothrombin (i.e., clotting factor II), a vitamin K-dependent protein in plasma, is directly involved in the coagulation process. Both vitamin K1 and vitamin K2 (including MK-7) have been shown to attenuate the pharmacological effect of anticoagulants in clinical studies, with varying thresholds (Schurgers et al. 2004, 2007; Theuwissen et al. 2013). Vitamin K antagonists (VKAs), such as warfarin, phenprocoumon, acenocoumarol, and tioclomarol, inhibit coagulation through antagonizing the procoagulant action of vitamin K, thereby disturbing the coagulation cascade. As a result, co-administration of vitamin K (including MK-7) with VKAs is contraindicated (NIH 2021; Drake 2022). Conversely, the EFSA (2008) reviewed unpublished studies that demonstrated MK-7 did not affect endogenous thrombin potential or thrombin peak height in healthy adults not taking anticoagulants, indicating that no activation of the clotting system was observed (Vermeer et al. 2007a,b).

Available animal toxicological studies on MK-7 have not shown effects on coagulation parameters (Pucaj et al. 2011; Hwang et al. 2024). In subchronic oral toxicity studies in rats, the authors did not consider observed changes in blood coagulation parameters, such as prothrombin time (PT) or activated partial thromboplastin time (APTT), to be of toxicological significance. The study authors noted that this was due to the lack of dose relationship (Pucaj et al. 2011) and the lack of effects in the main study group (Hwang et al. 2024).

MK-7 has been extensively studied for its safety and efficacy in controlled clinical trials involving hundreds of participants from diverse populations. No serious adverse effects associated with supplementation were reported across the 45 studies identified that met the inclusion criteria for

¹ HOI is defined as the highest intake level with adequate data to establish that adverse effects do not occur at intakes up to that level.

² Limited human intervention trials with MK-4 were identified; data specific to this menaquinone are included in the discussion for context relative to that of MK-7 only.

this review, which tested doses ranging from 58.3-462.8 µg per day for up to two years. Most studies reported specifically on incidence of adverse events or side effects; only a few studies did not include monitoring for such in the methodology. Seven of the studies identified were designed to specifically include clinical chemistry parameters relevant to potential effects on coagulation following administration of MK-7, as summarized below. No adverse effects on any of the parameters assessed were reported.

- In a double-blinded, placebo-controlled, randomized intervention trial ("RenaKvit" trial), hemodialysis patients were dosed with 360 μg per day or placebo for up to two years (Bladbjerg et al. 2023; Levy-Schousboe et al. 2021, 2023). In one analysis of this cohort, intervention for 52 weeks resulted in no significant effects on biomarkers of coagulation activation (thrombin generation and prothrombin fragment concentrations), clot activities of vitamin K-dependent coagulation factors (II (FII:C), VII (FVII:C), IX (FIX:C), and X (FX:C), or vascular events compared to the placebo group (Bladbjerg et al. 2023). Other publications with this same cohort reported the number of thromboembolic events was higher in the placebo group compared to the treated group (360 μg MK-7 per day for two years; p value of 0.02) due to "more events in one placebo-supplemented participant" (Levy-Schousboe et al. 2021, 2023).
- PT time was determined to be the same between placebo and MK-7 (360 μg per day) groups of vitamin k-deficient kidney transplant recipients after 12 weeks (Eelderink et al. 2023).
- No effects on thrombin generation were observed in a randomized, double-blind, controlled trial in healthy adults following intervention with 0, 10, 20, 45, 90, 180 or 360 μg per day for three months (Theuwissen et al. 2012).
- In a prospective, randomized, crossover intervention trial, hemodialysis patients were given 360 μg per day for six weeks. After a three-week washout period, the same patients were given a vitamin K-rich diet. No statistically significant differences were found in international normalized ratios (INRs) between groups (Lentz et al. 2022).
- Inaba et al. (2015) published two double-blind, randomized, controlled trials. In the first, post-menopausal women were administered 0, 50, 100, or 200 µg per day for four weeks. In the second study, healthy adults were dosed with 100 µg per day for 12 weeks. While PT-

INR was not assessed in the first study, there were no statistically significant effects on this parameter in the second study.

- In an observational case-series, no effects on "bleeding time and clotting time" were observed following intervention with 100 μg per day in adults with muscle cramps for three months; however, no data on these parameters were presented in the publication (Mehta et al. 2010).
- Ren et al. (2021) administered 90 µg per day to healthy adults, finding no statistically significant differences in PT, APTT, thrombin time, or activities of coagulation factors II, VII, IX, and X after 30 days. Information on study design was limited.

Four additional studies stated that adverse events potentially related to coagulation (described as thrombotic, clotting, and/or vascular) did not occur following intervention with MK-7 or that incidences were not statistically significantly different between groups (Witham et al., 2020; Rahimi Sakek et al. 2021; Haroon et al. 2023; Naiyarakseree et al. 2023). For example, in a one-year randomized, double-blind, placebo-controlled study, the incidence of "vascular" events was similar in patients with chronic kidney disease receiving MK-7 (400 µg per day) or placebo (Witham et al. 2020). Similarly, Naiyarakseree et al. (2023) administered 375 µg per day for six months and reported that the incidence of arteriovenous fistula thrombosis to be the same between the placebo and intervention groups. While these incidences of potentially related adverse events were reported, coagulation-related clinical chemistry parameters were not assessed in these studies.

The lack of serious adverse effects in interventional studies with MK-7 is corroborated by other long-term, high-dose trials that included concomitant exposures. One randomized, double-blind, multicenter trial in men with aortic valve calcification administered 720 µg plus 25 µg vitamin D per day or placebo for two years; no differences in PT-INR or adverse events occurred between groups (Diederichsen et al. 2022). In another randomized controlled trial, hemodialysis patients with atrial fibrillation received VKAs or 10 mg per day rivaroxaban with or without 2,000 µg thrice weekly for 1.5 years (De Vriese et al. 2020). The incidence of cardiovascular events was similar between groups, and bleeding outcomes were significantly higher in the VKA group. Overall, data from multiple clinical trials indicate that MK-7 is well tolerated and not associated with significant adverse events in humans.

Official Reviews

UL values specifically for MK-7 have not been derived by the authoritative agencies listed below. Information on assessments for vitamin K1 and/or vitamin K2 are included for completeness.

IOM (2001). The IOM found no reports of adverse effects for vitamin K₁ or vitamin K₂; hence, it concluded that a quantitative risk assessment could not be conducted, and no UL value was established.

Expert Group on Vitamins and Minerals (EVM 2003). In its review of vitamin K, the UK's EVM noted that "there are clear differences in the toxicity of different forms of vitamin K" and that "few data are available relating to" vitamin K2. No human clinical or toxicological studies conducted with vitamin K2 were included in the review. The EVM derived a guidance level for supplemental vitamin K1 only.

European Food Safety Authority (EFSA 2006). The EFSA (2006)³ determined that there were no "appropriate data from which to set a numerical upper limit for vitamin K" (all forms).

In a separate assessment, the EFSA (2008) delivered its Scientific Opinion on the safety of a vitamin K2-rich extract for specified proposed uses and use levels as a novel food. The vitamin K2 extract consisted primarily of MK-7, and to a lesser extent MK-6. The EFSA (2008) summarized the available human clinical and animal toxicology studies on vitamin K2. The Panel noted that available studies on MK-7 and MK-6 were limited and, therefore, read-across from studies with MK-4 was employed based on "the similar metabolic fate of the vitamin K derivatives, and the structural similarity of the vitamin K2 homologues." The key study identified by the EFSA was a one-year dietary toxicity study in rats administered concentrations of a synthetic MK-4 equivalent to 0, 20, 100, or 500 mg per kg bw per day (Hosokawa et al. 1995). The EFSA (2008) identified the lowest dose of 20 mg MK-4 per kg bw per day as the LOAEL, citing "that a significant decrease in prothrombin time (PT) in all treated males, pointing at decreased

 $^{^{3}}$ Originally published by the EC SCF in 2003 as SCF/CS/NUT/UPPLEV/32 Final.

time to form blood clots, could be an adverse effect." The EFSA also referred to unpublished human interventional studies demonstrating a lack of effects on blood clotting parameters in children and adults up to 45 and 360 µg MK-7 per day, respectively (Van Summeren et al. 2007; Vermeer et al. 2007a,b). Based on the preclinical toxicology study with MK-4, the human interventional studies with MK-7, and dietary intake estimates of MK-7 in the oil, the EFSA concluded use of the oil (meeting the provided specifications) was "not of safety concern."

Chinese Nutrition Society (CNS 2023). The CNS stated that "the UL value still could not be established" for vitamin K, including vitamin K2. However, an adequate intake (AI) level of 80 µg total vitamin K per day was derived for adults.

Indian Council of Medical Research - National Institute of Nutrition (ICMR-NIN 2020). The ICMR-NIN did not include vitamin K forms, including vitamin K2, when deriving UL values.

Korean Nutrition Society (KNS 2020). The KNS published its general approach to evaluating data for setting DRI values. The KNS did not publish a UL for vitamin K (total), and it does not appear that vitamin K2 was assessed.

CRN Recommendations

The previous (3rd) edition of CRN's *Vitamin and Mineral Safety* derived a single UL value for vitamin K (vitamin K1 and vitamin K2) of 10 mg per day based on a single human clinical study with vitamin K1 (Craciun et al. 1998). The goal of the present chapter was to derive an UL or HOI value specific to supplemental MK-7 (one vitamin K2 menaquinone) in adults following CRN's updated methodology. While not all human clinical trials are specifically designed to evaluate adverse effects, no new trials were identified that reported any serious adverse effects with supplemental MK-7. As with any assessment in which not all available data are reviewed, inherent uncertainties with the risk assessment and selection of the UL or HOI are recognized.

CRN's safety methodology for deriving supplemental UL or HOI values prioritizes data from human studies, when available. Approximately 41 human clinical trials in 43 publications since the 3rd edition (2014) were identified and subsequently reviewed that met the inclusion criteria for

the current chapter. Two earlier studies were also identified via secondary sources. Given the lack of any serious adverse effects observed across clinical studies with MK-7, a supplemental HOI level is derived for vitamin K7. The table below summarizes the key human clinical studies considered in deriving the supplemental HOI level by CRN according to its principal points of departure for risk assessment (as described in the Methods chapter).⁴

Key Studies Considered for the CRN HOI for Menaquinone-7 (MK-7) in Adults

		Participant	No. of	Dose(s)		Parameters	NOAEL
Reference	Study Design	Description	Subjects	(ug/day)	Duration	Assessed	(ug/day)
Witham et al. (2020)	Randomized, double-blind, placebo- controlled	Patients with chronic kidney diseases	159	0, 400	1 year	Incidence of vascular events	400
Naiyarakseree et al. (2023)	Multicenter, randomized, placebo- controlled	Patients on chronic dialysis	96	0, 375	6 months	Incidence of thrombosis	375
Bladbjerg et al. (2023)	Multicenter, randomized, double-blind, placebo- controlled	Patients on chronic dialysis	123	0, 360	1 year	Thrombin generation; prothrombin fragment concentration; clotting activity of K-depending coagulation factors	360
Theuwissen et al. (2012)	double-blind, placebo- controlled	Healthy adults	42	0, 10, 20, 45, 90, 180, 360	3 months	Thrombin generation	360
Eelderink et al. (2023)	Randomized, double-blind, placebo- controlled	Patients with vitamin K-deficiency and kidney transplant	40	0, 360	3 months	Prothrombin time	360
Rahimi Sakak et al. (2021)	Randomized, double-blind, placebo- controlled	Patients with type 2 diabetes	68	0, 360	3 months	Incidence of blood clotting reactions	360

As discussed in the Safety Considerations section, the potential effects of vitamin K vitamers on

⁴ Where numerous relevant studies were identified, those most pertinent to the HOI derivation are included in the table as representative studies. Prioritization was given to studies at dose levels informing the HOI and studies with higher weighting based on CRN's Methods (e.g., duration, number of participants, randomization, etc.).

the coagulation process have been well established in patients taking VKA anticoagulants. No changes in clinical chemistry parameters relevant to potential effects on coagulation were observed in interventional studies in individuals not taking VKA medications following administration of MK-7. Administration of MK-7 in clinical studies was not associated with an increase in coagulation-related adverse events at doses ranging from 154-400 µg per day for up to two years (Witham et al., 2020; Rahimi Sakek et al. 2021; Haroon et al. 2023; Naiyarakseree et al. 2023). In addition, no effects on coagulation-related clinical chemistry parameters were observed in studies with doses ranging from 10-360 µg MK-7 per day for up to one year (Mehta et al. 2010; Theuwissen et al. 2012; Inaba et al. 2015; Ren et al. 2021; Lentz et al. 2022; Bladbjerg et al. 2023; Eelderink et al. 2023). The RenaKvit trial provides the most comprehensive assessment of relevant clinical chemistry parameters, which were analyzed following administration of 360 µg per day in chronic dialysis patients for one year (Bladbjerg et al. 2023). In addition, incidence of thrombosis was similar between the placebo group and patients administered 375 µg MK-7 per day for six months in the study published by Naiyarakseree et al. (2023). One other study conducted at 400 µg per day was identified that reported differences in incidence of "vascular" events; however, this publication did not provide detailed descriptions that would allow analysis of coagulation-related events specifically (Witham et al. 2020; Naiyarakseree et al. 2023).

No serious adverse effects were reported in any human intervention study with MK-7 meeting the inclusion criteria for this review; studies administered doses ranging from $58.3-462.8~\mu g$ per day for four weeks to two years. Based on the available data, $375~\mu g$ per day from the Naiyarakseree et al. (2023) study is identified as the NOAEL for MK-7 for healthy adults following the CRN process. As described in CRN's Methods, if the supplemental intake dose-response relationship is identified from the strongest data and assessed conservatively, no additional uncertainty factor is needed (that is, the implicit UF is 1.0). Consistent with CRN's methodology, an UF of 1 is applied to yield an HOI level of $375~\mu g$ per day for adults for supplemental MK-7.

Because of the strong antagonistic interaction of vitamin K vitamers (i.e., vitamin K1 and vitamin K2) with VKA anticoagulant drugs (e.g., warfarin, phenprocoumon, acenocoumarol, and tioclomarol) and impact on INR, the HOI level for MK-7 does not apply to individuals taking such medications. Individuals taking such medication, or otherwise with known bleeding

EXCERPTED FROM: Vitamin and Mineral Safety 4th Edition (2025) Council for Responsible Nutrition (CRN) https://www.crnusa.org/resources/vitamin-mineral-safety

disorders, should consult with their physician regarding use of vitamin K-containing supplements, including MK-7.

Quantitative Summary for Menaquinone-7 (MK-7)

CRN HOI level (2025), supplemental intake	375 μg/day ^a
IOM UL (2001)	Not determined
EFSA UL (2006)	Not determined ^b
EVM (2003)	Not determined ^c
CNS (2023)	Not determined
ICMR-NIN (2020)	Not evaluated
KNS (2020)	Not evaluated

^a Does not apply to individuals taking VKA anticoagulant medications or otherwise with known bleeding disorders.

References

Asakura, H, Myou S, Ontachi Y, et al. 2001. Vitamin K administration to elderly patients with osteoporosis induces no hemostatic activation, even in those with suspected vitamin K deficiency. *Osteoporosis Int.* 12:996–1000.

Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C. 2013. The role of menaquinones (vitamin K₂) in human health. *Br J Nutr*. 110(8):1357-68.

Bladbjerg EM, Levy-Schousboe K, Frimodt-Møller M, Kjærgaard KD, Strandhave C, Brasen CL, Frandsen NE, Hansen D, Marckmann P. 2024. No Detectable Coagulation Activation After Vitamin K (MK-7) Supplementation in Patients on Dialysis With Functional Vitamin K Deficiency: A One-Year Randomized, Placebo-Controlled Study. *J Ren Nutr.* 34(4):337-342.

Chinese Nutrition Society (CNS). 2023. *Dietary Reference Intakes for China, A summary Report*. People's Medical Publishing House.

^b The EFSA (2008) determined that estimated 97.5 percentile intakes up to 115 μg MK-7 per day were "not of safety concern."

^c The EVM (2003) derived a guidance level for supplemental vitamin K1 only.

Craciun AM, Wolf J, Knapen MH, Brouns F, Vermeer C. 1998. Improved bone metabolism in female elite athletes after vitamin K supplementation. *Int J Sports Med*. 19:479–484.

Diederichsen ACP, Lindholt JS, Möller S, Øvrehus KA, Auscher S, Lambrechtsen J, Hosbond SE, Alan DH, Urbonaviciene G, Becker SW, Fredgart MH, Hasific S, Folkestad L, Gerke O, Rasmussen LM, Møller JE, Mickley H, Dahl JS. 2022. Vitamin K2 and D in Patients With Aortic Valve Calcification: A Randomized Double-Blinded Clinical Trial. *Circulation*. 145(18):1387-1397.

De Vriese AS, Caluwé R, Pyfferoen L, De Bacquer D, De Boeck K, Delanote J, De Surgeloose D, Van Hoenacker P, Van Vlem B, Verbeke F. 2020. Multicenter Randomized Controlled Trial of Vitamin K Antagonist Replacement by Rivaroxaban with or without Vitamin K2 in Hemodialysis Patients with Atrial Fibrillation: the Valkyrie Study. *J Am Soc Nephrol*. 31(1):186-196.

Drake VJ. 2022. Vitamin K web page. Linus Pauling Institute website. http://lpi.oregonstate.edu/infocenter/vitamins/vitaminK/. (Updated July 2022)

Eelderink C, Kremer D, Riphagen IJ, Knobbe TJ, Schurgers LJ, Pasch A, Mulder DJ, Corpeleijn E, Navis G, Bakker SJL, de Borst MH, Te Velde-Keyzer CA. 2023. Effect of vitamin K supplementation on serum calcification propensity and arterial stiffness in vitamin K-deficient kidney transplant recipients: A double-blind, randomized, placebo-controlled clinical trial. *Am J Transplant*. 23(4):520-530.

Ellis JL, Fu X, Karl JP, Hernandez CJ, Mason JB, DeBose-Boyd RA, Booth SL. 2022. Multiple Dietary Vitamin K Forms Are Converted to Tissue Menaquinone-4 in Mice. *J Nutr.* 152(4):981-993.

European Food Safety Authority (EFSA). 2006. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Vitamin K. European Commission, SCF/CS/NURRRRT/UPPERLEV/31 Final Report. Brussels.

European Food Safety Authority (EFSA). 2008. Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. Vitamin K₂ added for nutritional purposes in foods for particular nutritional uses, food supplements and foods intended for the general population and Vitamin K₂ as a source of vitamin K added for nutritional purposes to foodstuffs, in the context of Regulation (EC) N° 258/971. *The EFSA Journal*. 822, 1-31.

Expert Group on Vitamins and Minerals (EVM), Committee on Toxicity. 2003. *Safe Upper Levels for Vitamins and Minerals*. London: Food Standards Agency Publications.

Feskanich D, Weber P, Willett W, Rockett H, Booth S, Colditz G. 1999. Vitamin K intake and hip fractures in women: a prospective study. *Am J Clin Nutr.* 69:74–79.

Food Standards Australia New Zealand (FSANZ). 2024. Supporting document 1
Risk and technical assessment – Application A1300 A1300 – Vitamin K2 (as Menaquinone-7) as a permitted form of Vitamin K in FSMP.

https://www.foodstandards.gov.au/sites/default/files/2024-09/A1300%20CFS%20SD1.pdf.

Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, Maresz K, Kramann R, Schurgers L. 2019. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. *Int J Mol Sci.* 20(4):896.

Hosokawa S, Nakanowatari J, Ogura K, Okada F and Sagami F (1995) 52-week toxicity study of menatetrenone in rats by oral administration. Japan Journal of Pharmacology and Therapeutics. 23(10):171-184. (Reviewed by EFSA [2008] and US FDA [2019])

Hwang SB, Choi M-J, Lee, H-J, Han J-J. 2024. Safety evaluation of vitamin K2 (menaquinone-7) via toxicological tests. *Sci Rep.* 14, 5440.

Inaba N, Sato T, Yamashita T. 2015. Low-Dose Daily Intake of Vitamin K(2) (Menaquinone-7) Improves Osteocalcin γ-Carboxylation: A Double-Blind, Randomized Controlled Trials. *J Nutr*

Sci Vitaminol (Tokyo). 61(6):471-80.

Indian Council of Medical Research - National Institute of Nutrition (ICMR-NIN). 2020. ICMR-NIN Expert Group on Nutrient Requirement for Indians, Recommended Dietary Allowances (RDA) and Estimated Average Requirements (EAR).

Institute of Medicine (IOM). 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press.

Koitaya N, Sekiguchi M, Tousen Y, Nishide Y, Morita A, Yamauchi J, Gando Y, Miyachi M, Aoki M, Komatsu M, Watanabe F, Morishita K, Ishimi Y. 2014. Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. *J Bone Miner Metab*. 32(2):142-50.

Korean Nutrition Society (KNS). 2020. Ministry of Health and Welfare (KR). The Korean Nutrition Society. *Dietary Reference Intakes for Koreans*. Sejong: Ministry of Health and Welfare.

Lentz KA, Vahlgren J, Hansen D, Plebani M, Fusaro M, Rasmussen LM, Jakobsen J, Sloth JJ, Post Hansen H, Andersen JR. 2022. Treatment of Vitamin K Deficiency in Hemodialysis Patients - A Pilot Study Comparing Menaquinone-7 Tablets and a Vitamin K Rich Diet. *Int J Nephrol Renovasc Dis.* 15:267-276.

Levy-Schousboe K, Frimodt-Møller M, Hansen D, Peters CD, Kjærgaard KD, Jensen JD, Strandhave C, Elming H, Larsen CT, Sandstrøm H, Brasen CL, Schmedes A, Madsen JS, Jørgensen NR, Frøkjær JB, Frandsen NE, Petersen I, Marckmann P. 2021. Vitamin K supplementation and arterial calcification in dialysis: results of the double-blind, randomized, placebo-controlled RenaKvit trial. *Clin Kidney J.* 14(9):2114-2123.

Levy-Schousboe K, Marckmann P, Frimodt-Møller M, Peters CD, Kjærgaard KD, Jensen JD, Strandhave C, Sandstrøm H, Hitz MF, Langdahl B, Vestergaard P, Brasen CL, Schmedes A, Madsen JS, Jørgensen NR, Frøkjær JB, Frandsen NE, Petersen I, Hansen D. 2013. Vitamin K supplementation and bone mineral density in dialysis: results of the double-blind, randomized,

placebo-controlled RenaKvit trial. Nephrol Dial Transplant. 38(10):2131-2142.

Marles RJ, Roe AL, Oketch-Rabah HA. 2017. US Pharmacopeial Convention safety evaluation of menaquinone-7, a form of vitamin K. *Nutr Rev.* 75(7):553-578.

Mehta DS, Vaidya RA, Dound YA, Nabar NS, Pandey SN, Vaidya ADB. 2010. Therapeutic activity and safety of vitamin K 2-7 in muscle cramps: an interventional case-series. *The Indian Practitioner*. 63:287-291.

Naiyarakseree N, Phannajit J, Naiyarakseree W, Mahatanan N, Asavapujanamanee P, Lekhyananda S, Vanichakarn S, Avihingsanon Y, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. 2023. Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial. *Nutrients*. 15(11):2422.

Nakamura E, Aoki M, Watanabe F, Kamimura A. 2014. Low-dose menaquinone-4 improves γ-carboxylation of osteocalcin in young males: a non-placebo-controlled dose-response study. *Nutr J.* 13:85.

National Institutes of Health (NIH), Office of Dietary Supplements. 2021. Vitamin K. Factsheet for Health Professionals. Bethesda, Maryland. https://ods.od.nih.gov/factsheets/VitaminK-HealthProfessional/.

Pucaj K, Rasmussen H, Møller M, Preston T. 2011. Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7. *Toxicol Mech Methods*. 21(7):520-32.

Rahimi Sakak F, Moslehi N, Niroomand M, Mirmiran P. 2021. Glycemic control improvement in individuals with type 2 diabetes with vitamin K2 supplementation: a randomized controlled trial. *Eur J Nutr*.60(5):2495-250.

Ren R, Liu J, Cheng G, Tan J. 2021. Vitamin K2 (Menaquinone-7) supplementation does not affect vitamin K-dependent coagulation factors activity in healthy individuals. *Medicine* (*Baltimore*). 100(23):e26221.

Rønn SH, Harsløf T, Pedersen SB, Langdahl BL. 2021. Vitamin K2 (menaquinone-7) increases plasma adiponectin but does not affect insulin sensitivity in postmenopausal women: a randomized controlled trial. *Eur J Clin Nutr*. 75(11):1661-1667.

Sato T, Schurgers LJ, Uenishi K. 2012. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. *Nutr J.* 11:93.

Sato T, Inaba N, Yamashita T. 2020. MK-7 and Its Effects on Bone Quality and Strength. Nutrients. 12(4):965.

Schurgers LJ, Shearer MJ, Hamulyák K, Stöcklin E, Vermeer C. 2004. Effect of vitamin K intake on the stability of oral anticoagulant treatment: dose-response relationships in healthy subjects. *Blood*. 104(9):2682-9.

Schurgers LJ, Teunissen KJ, Hamulyák K, Knapen MH, Vik H, Vermeer C. 2007. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. *Blood*. 109(8):3279-8.

Theuwissen E, Cranenburg EC, Knapen MH, Magdeleyns EJ, Teunissen KJ, Schurgers LJ, Smit E, Vermeer C. 2012. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. *Br J Nutr.* 108(9):1652-7.

Theuwissen E, Teunissen KJ, Spronk HM, Hamulyák K, Ten Cate H, Shearer MJ, Vermeer C, Schurgers LJ. 2013. Effect of low-dose supplements of menaquinone-7 (vitamin K2) on the stability of oral anticoagulant treatment: dose-response relationship in healthy volunteers. *J Thromb Haemost*. 11:1085-92.

United States Food and Drµg Administration (US FDA). 2019. Generally Recognized as Safe Notification (GRN) 887 for Vitamin K2-7 (Menaquinone-7).

Ushiroyama T, Ikeda A, Ueki M. 2002. Effect of continuous combined therapy with vitamin K₂

and vitamin D₃ on bone mineral density and coagulofibrinolysis function in postmenopausal women. *Maturitas*. 41:211–221.

Van Summeren et al. M, Braam L, Lilien M, Schurgers L, Kuis W, Vermeer C. 2007 The effect of vitamin K2 supplementation on osteocalcin carboxylation in healthy children (the VitaKids study). Unpublished Protocol from the University of Maastricht. December 2006. [As cited by EFSA (2008)].

Vermeer C, Schurgers L, Knapen M. 2007a. Dose finding study for vitamin K2 in human volunteers. Unpublished Protocol from the University of Maastricht. April 3, 2007. [As cited by EFSA (2008)].

Vermeer C, Schurgers L, Knapen M. 2007b. Dose finding study for vitamin K2 in human volunteers. Unpublished Report from the University of Maastricht. April 3, 2007. [As cited by EFSA (2008)].

Witham MD, Lees JS, White M, Band M, Bell S, Chantler DJ, Ford I, Fulton RL, Kennedy G, Littleford RC, McCrea IV, McGlynn D, Panarelli M, Ralston MR, Rutherford E, Severn A, Thomson N, Traynor JP, Struthers AD, Wetherall K, Mark PB. 2020. Vitamin K Supplementation to Improve Vascular Stiffness in CKD: The K4Kidneys Randomized Controlled Trial. *J Am Soc Nephrol*. 31(10):2434-2445.

Zhang T, O'Connor C, Sheridan H, Barlow JW. 2024. Vitamin K2 in Health and Disease: A Clinical Perspective. *Foods.* 13(11):1646.

Updated November 2025 by ToxStrategies, LLC, a BlueRidge Life Sciences Company